论文部分内容阅读
对航空发动机的多变量解耦控制方法进行了研究,提出了一种基于RBF网络辨识的航空发动机模糊神经网络解耦控制方法。该方法利用RBF网络辨识航空发动机的实时模型,为模糊神经网络控制器参数的调整提供了Jacobian信息,解决了模糊神经网络自适应控制器在被控对象不能精确建模情况下应用的问题。仿真结果表明,系统鲁棒性强.在设计点和偏离设计点处,均具有良好的动态特性和解耦特性。