晚明南直疫灾:“大变迁”下的环境脆弱与社会拯救

来源 :农业考古 | 被引量 : 0次 | 上传用户:ccysshucc
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
在晚明"大变迁"的背景下,南直隶的自然环境和社会环境日趋脆弱,成为了疫灾的高发地区。在时间和空间上,南直隶的疫灾呈现出明显的不平衡性,就发生时间而言,崇祯年间疫灾发生密度最高;在发生地区上,以苏州府、扬州府、应天府、淮安府、凤阳府等地区疫灾暴发次数为多。频繁的疫灾不仅直接危害人民生命安全,甚至会引发严重的经济、政治危机,故而以各级政府为代表的官方力量和以士绅、宗族、医家为主体的民间力量都进行了积极应对,形成了社会性的防疫救灾网络。这些举措包括开仓赈粮、捐赀救济、施医送药、施棺助葬等方面,为当地的疫灾治理做出了重要贡献。
其他文献
随着市场经济的持续推进,党务人才的培养与建设不仅关系着全面从严治党战略的贯彻与落实、关系着党建工作的深入开展,也直接影响着企业党员群体素质和能力的提升、影响着党群关系的稳定及企业发展方向的正确性。只有构建合格的党务人才队伍,才能为企业的可持续发展奠定建设的政治和群众基础。但即使如此,由于我国正处于新旧经济体制改革的关键时期,很多新制度、新理念、新模式并不成熟,从而导致了一些潜在的问题阻碍了党务人才
目的:观察安神补脑液辅助西药治疗双相情感障碍维持期失眠的临床疗效。方法:回顾性选取104例双相情感障碍维持期失眠患者的临床资料,根据资料中治疗方式分为对照组和观察组各52例。对照组给予常规西药治疗,观察组在对照组基础上给予安神补脑液辅助治疗。比较2组治疗前后负性情绪[汉密尔顿焦虑量表(HAMA)、汉密尔顿抑郁量表(HAMD)]、匹兹堡睡眠质量指数(PSQI)评分以及睡眠状况相关指标,评价临床疗效,
方程与不等式是刻画数量关系的重要数学模型,是进一步学习函数和解决几何问题中数量关系的常用工具. 2021年全国各地中考试题对方程与不等式的命题设计紧扣《义务教育数学课程标准(2011年版)》的要求,强化方程与不等式的工具特征,注重在新的问题情境下,合理构建方程或不等式模型,实现逐步转化、解决实际问题的基本过程.
1 内容分析一元二次方程这部分内容主要包括一元二次方程的概念、解法和应用。其中,一元二次方程的概念需建立与一元一次方程、二元一次方程之间的联系,据此凸显"一元""二次"的内涵。有些问题的条件仅显示"方程",并不确定是"一次"还是"二次",此时需要分类讨论,这是学生易错之处。一元二次方程的解法有直接开平方法、配方法、公式法和因式分解法,能否根据一元二次方程的形式特点灵活选用合适的方法求解是难点
期刊
现阶段,随着我国新课程改革的不断深入,初中数学教师也要对传统的教学理念进行调整和改变,并将先进的教学理念运用到日常教学中,教师可以积极运用章节单元分类的教学策略,从而更好地进行数学教学。为了培养学生的核心素养,要求教师必须让学生在掌握每个单元的基础数学知识的同时锻炼实践能力和课程思维等综合素养。因此,教师必须采取多种教学模式进行单元教学。本文以初中数学《一元二次方程》为例,分析了本课的教学内
期刊
本文给出"三个二次"的二轮复习教学设计,主要通过数形结合等思想方法来引导学生基于"三个二次"之间的相互关系,研究"三个二次"之间的相互转化与灵活应用,并探索如何将一些非二次的问题转化为"二次型"问题来解决.
复习课作为初中数学的主要课型之一,其对于提升学生的数学学习能力有着重要的影响。在生本教育理念的引导下,我尝试将前置性作业引入到初中数学复习课中,引导学生在自主完成作业的过程中把握数学复习内容,为以学定教的实现打下坚实的基础。那么,我们要如何在初中数学复习课中进行前置性作业设计呢?这是本文论述的重点所在。
思想是数学的灵魂,问题是数学的心脏,方法是数学的行为。数学思想是指现实世界的空间形式和数量关系反映到人们的意识之中,经过思维活动而产生的结果,是对数学事实与理论经过概括后产生的本质认识。数学思想是数学活动的指导思想,它能在整体和思维的更高层次上指导学生有效地认识数学本质,建构数学知识结构,并运用数学知识和方法,探究发现解决问题的方法和途径。化归是初中数学中十分常见且重要的一种数学思想。所谓
期刊
方程与不等式是"数与代数"的核心知识,是刻画现实世界数量关系的有效模型,在实际问题的解决中起着极其重要的"工具"作用.结合2021年全国部分地区中考试卷中"方程与不等式"专题的相关内容,从试题分析、解法分析、解法赏析、思考启示四个方面进行解题分析.
晚明科举之途壅塞,从秀才到举人、贡士、进士,对于某些人来说,是一个相当漫长艰辛的过程。特别是在江南,由于读书人太多,而名额又相对太少,学子能顺利通过科举之路,获得官场地位的少之又少。大量被淘汰下来的士人,没有制度化的安排,为了谋生,不得不靠才艺来博取生活资源。这样,一个特殊的山人群体,在成化年间出现,到嘉靖、万历年间达到最盛。
期刊