论文部分内容阅读
在对传统特征选择算法进行研究的基础上,提出了一种基于双模糊信息的特征选择算法(feature selection algorithm based on doubly fuzziness information,FSA-DFI)。第一种模糊体现在对最小学习机(least learning machine,LLM)进行模糊化后得到模糊最小学习机(fuzzy least learning machine,FUZZYLLM)中;另一种模糊则是在基于贡献率模糊补充这一方法中体现的,其中贡献率高的特征才可能被选入最终