论文部分内容阅读
推荐系统是通过分析已知信息和用户偏好,在用户选择物品或服务时,向用户提供帮助和建议的系统。但是目前大部分推荐系统都是基于用户评价或评分信息向用户推荐购物、电影等电子商务服务,基于用户轨迹数据进行用户兴趣区域推荐的研究十分罕见。用户的轨迹数据蕴含了用户的偏好,不同的轨迹反映不同的用户特性。所以提出一种从用户轨迹数据中挖掘最大频繁项集,并将最大频繁项集用于计算用户相似性和偏好的推荐方法。该推荐方法还综合考虑了相似用户访问次数、置信度和用户住宅信息等可能会影响推荐质量的因素。将提出的方法和基于协同过滤的推荐方法