论文部分内容阅读
目的基因表达谱数据分析是生物信息学领域最重要的研究内容之一。其可实现对不同病理分型的肿瘤的正确分类,对肿瘤诊断和治疗具有重大意义。方法本文应用压缩感知算法实现对胃癌基因表达谱数据的分类,运用训练数据构造冗余字典,采用随机分布的规范行矢量高斯矩阵构造感知矩阵,对训练数据和测试数据进行感知,利用正交l2-范数算法对基因表达谱数据进行重建,在变换域中采用近邻法测试判断数据类别,与样本的实际类别相比较。结果实验结果表明,压缩感知算法与K均值聚类、SVM等其他分类算法相比有较高的分类正确率,且分类速度快,能避免特征