论文部分内容阅读
为了解决齿根疲劳裂纹故障难以识别的问题,对齿轮箱正常和裂纹故障状态的声发射信号进行时间序列分析,利用AR模型的自回归系数作为齿轮箱不同状态时的特征向量,形成支持向量机的训练样本对支持向量机进行网络训练,实现对齿轮箱正常、轻微裂纹和严重裂纹故障状态的识别与诊断。实验结果表明:基于支持向量机和声发射技术的齿轮箱故障诊断系统能够准确地识别与诊断齿轮箱的裂纹故障状态,它对于齿轮裂纹故障检测是一种有效的诊断手段。