论文部分内容阅读
目的比较预测性伪似然法(PQL)和基于马尔可夫蒙特卡罗(MCMC)的贝叶斯方法在广义线性混合模型参数估计的偏差和精度。方法针对样本含量不等的层次数据,运用SAS/glimmix过程和WinBUGS软件分别进行PQL和贝叶斯法参数估计。结果两种方法固定效应参数估计结果基本一致,但对随机效应方差的估计,基于MCMC的贝叶斯法偏差远小于PQL法。结论对二分类层次数据,采用广义线性混合效应模型贝叶斯估计精度更高,偏差更小。