关于链半环上矩阵张量积的某些结果

来源 :黑龙江大学自然科学学报 | 被引量 : 0次 | 上传用户:axiaaawei
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
本文研究链半环上矩阵的张量积,给出了成立的充要条件并指出了它的一些应用。
其他文献
提出了一种新型的基于双重认证的安全电子邮件系统模型,它采用公用PKI与用户私人CA相结合的方式,既可解决身份验证问题,又消除"最高权限"带来的信任危机,而且针对用户邮件对
本文给出了邻近空间中近子,极大近子和极大邻近子的概念,研究了它们的基本性质及它们共有的特征-点近子,获得了邻近空间紧的克要条件是该空间上的每个极大邻近子是点近子。
介绍了微波热效应原理,综述了近年来环氧树脂及其复合材料的微波固化研究进展,重点讨论了环氧、环氧微波固化工艺及其与加热固化的比较,热塑性树脂改性环氧,颗粒、纤维增强环
本文给出了如下线性定常灰色系统的可观性与可控性的几个判据条件,并在一些特定情况下,给出了充分必要条件
读者小雅: 我于去年大学毕业,刚走进社会,觉得一切都很新奇。学校的师长总是教育我们要注意踉同事间的相处,多向前辈请教。这些教导我都牢记在心。我单位里男同事较多,我生性
本文对交换环R上n×n矩阵代数的自同构群的中心进行了刻划,得到了下列结论:n≥3时,自同构群是无心的;当n=2时,自同构群的中心同构于R上的一个Abel子群(R的理想)N={x∈R|x2=0,r(r+1)x=0,对一切的r∈R}.
缘,妙不可言!稍不留神缘分就会与你擦身而过。为了留住生命中可遇不可求的缘分,我们应该学会好好把握缘分,将缘分进行到底,留住生命中最美的“缘”!
从供应链的角度,对大规模定制(MC)环境下的客户订单管理方法进行了研究.分析了MC、GT及ERP的关系,给出了MC环境下客户订单处理的典型流程,提出了GT和ERP相结合的订单管理方案
生育是神圣的,它是人类延续个体生生不息的源泉;生育又是高尚的,它容不下任何卑微与功利。然而在现实生活之中“边缘生育”也让我们触目惊心,那就让我们多一点目光来关注这些
生活中,恐怕再没有比结婚更需要深思熟虑的事情了。正因为如此,一旦人们下定决心,就会希望自己的求婚——这个恋爱的终极点能够出色圆满。男人希望他们的女人对这个日子刻骨