论文部分内容阅读
在考虑机器人系统中存在的模型不确定性的情况下,提出了一种基于RBF神经网络和反演技术的鲁棒自适应控制器的设计方法.首先,通过状态变换将机器人的模型转换为适用于反演技术的形式;然后,利用反演技术设计了鲁棒自适应控制器,用两个RBF神经网络分别对模型的不确定性进行了处理,并用Lyapunov稳定性理论推导出RBF神经网络的权重矩阵调节律以及相关的鲁棒项,证明了系统的全局稳定性;最后,进行了相应的仿真研究,验证了设计的正确性和有效性.