论文部分内容阅读
在支持向量域描述的基础上,提出了多核支持向量域描述.针对支持向量域描述核函数形式过于简单的缺点,将支持向量域描述由单个高斯核扩展为多个高斯核线性组合的形式.扩展后的多核支持向量域描述方法可以表述为半正定规划问题,因此可以收敛到全局最优解.新方法采用了更加复杂的核函数形式,能够更加灵活地描述训练样本在高维特征空间的边界分布情况,从而获得了比支持向量域描述更高的识别率和更低的虚警率.