论文部分内容阅读
研究扇形算子在数乘运算下的扇形性,对数乘算子的谱集及预解算子进行刻画,并探讨了它的纯虚数幂的有界性。以此为基础,采用迭代的方式,构造了Jordan块J(A)的预解式及其复指数幂的表达式;然后,借助矩阵的Jordan标准型,证明了当矩阵M的特征值集中在右半平面的一个扇形区域时,算子A的扇形性及纯虚数幂的有界性将在算子矩阵M(A)中得到保持。该研究成果可以应用于带有散度型或非散度型椭圆算子的偏微分方程组的研究。