论文部分内容阅读
摘 要:在新课改中,初中数学史被重新认识,它被看作理解数学的一种途径,介绍数学在现代生活中的广泛应用,这样在对数学内容的学习中,不仅可以使学生对数学的发展过程有所了解,激发学生学习数学的兴趣,还可以使学生体会数学在人类发展历史中的作用和价值。
关键词:中学;数学;教育;数学史
数学教材中有关于数学史的内容,它不在教学范围之列,往往被当成课外阅读内容,甚至连看也不看而被忽视了。新课改中,初中数学史被重新认识,它可以帮助学生更全面的认识数学学科,理解数学价值,激发数学兴趣,提升学生的人文科学素养。
一、把数学史看作理解数学的途径
忘掉历史,也就失去了未来,对数学的把握需要了解数学史。
(1)认识数学的发展规律,了解榜样的激励作用,减少学生数学学习时走“弯路”。数学史让我们认识数学发展的规律,了解昨天,指导今天,预见明天。从前人研究数学的经验教训中获取鼓舞和力量,以指导和推动我们今天的数学学习和研究,少走弯路。医治学生“专爱碰壁”毛病的良药之一就是让他们学一些数学史和科学史,不要把宝贵的青春浪费在徒劳的“研究”上。平时的教学中,要结合数学史教育,引导学生把精力用在基础知识的学习和基本技能的提高上,多做一些有意义的探究活动,以适应新课改学习方式的需要。数学思想形成中的曲折与艰辛以及那些伟大的探索者的失败与成功还可以使学生体会到,数学不仅仅是训练思维的体操,也不仅仅是科学研究的工具,它有着丰富的人文内涵。
(2)了解数学理论发展的历史背景,加深理解数学理论、公式、定理和数学思维。一般说来,历史不仅可以给出一种确定的数学知识,还可以给出相应知识的创造过程。对这种创造过程的了解,可以使学生体会到一种活的、真正的数学思维过程,而不仅仅是教科书中那些千锤百炼、天衣无缝,同时也相对地失去了生气与天然性、已经被标本化了的数学。从这个意义上说,历史可以引导我们创造一种探索与研究的课堂气氛,而不是单纯地传授知识。它既可以激发学生对数学的兴趣,培养他们的探索精神,而历史上许多著名问题的提出与解决方法还十分有助于他们理解与掌握所学的内容。写在书本上的数学公式、定理、理论都是前人苦心钻研经过无数次的探索、挫折和失败才形成的,是在当时社会生产、人们的哲学思想、数学家的独创精神联系在一起的活生生的数学。但是,我们从书本的条文上,已看不到数学成长、发展的生动的一面,而只看到数学的浓缩的形式,这就妨碍我们对这些数学理论的深刻理解。
(3)抓住数学历史名题,丰富教学内容,展现学习数学新途经。对于那些需要通过重复训练才能达到的目标,数学历史名题可以使这种枯燥乏味的过程变得富有趣味和探索意义,从而极大地调动学生的积极性,提高他们的兴趣。对于学生来说,历史上的问题是真实的,因而更为有趣;历史名题的提出一般来说都是非常自然的,它或者直接提供了相应数学内容的现实背景,或者揭示了实质性的数学思想方法,这对于学生理解数学内容和方法都是重要的;许多历史名题的提出与解决与大数学家有关,让学生感到他本人正在探索一个曾经被大数学家探索过的问题,或许这个问题曾难住过许多有名的人物,学生会感到一种智力的挑战,也会从学习中获得成功的享受,这对于学生建立良好的情感体验无疑是十分重要的;最后,历史名题往往可以提供生动的人文背景。向学生展示历史上的开放性的数学问题将使他们了解到,数学并不是一个静止的、已经完成的领域,而是一个开放性的系统,认识到数学正是在猜想、证明、犯错误、修正错误中发展进化的,数学进步是对传统观念的革新,从而激发学生的非常规思维,使他们感受到,抓住恰当的、有价值的数学问题将是激动人心的事情。
二、数学史应该融入中学数学教育
将数学史融入初中数学。结合整个中学数学教材内容,通盘计划,全面安排;应以历史唯物主义观点选取数学史料对学生进行介绍;还应注意学生的可接受性原则。具体说来,数学史与中学数学教育的内容整合可从以下几方面入手:
(1)在数与代数部分,可以穿插介绍代数及代数语言的历史,并将促成代数兴起与发展的重要人物和有关史迹的图片呈现在学生的面前,也可以介绍一些有关正负数和无理数的历史、一些重要符号的起源与演变、与方程及其解法有关的材料(如《九章算术》、秦九韶法)、函数概念的起源、发展与演变等内容。
(2)在空间与图形部分,可以通过以下线索向学生介绍有关的数学背景知识:介绍欧几里得《几何原本》,使学生初步感受几何演绎体系对数学发展和人类文明的价值;介绍勾股定理的几个著名证法及其有关的一些著名问题,使学生感受数学证明的灵活、优美与精巧,感受勾股定理的丰富文化内涵;介绍机器证明的有关内容及我国数学家的突出贡献;简要介绍圆周率π的历史,使学生领略与π有关的方法、数值、公式、性质的历史内涵和现代价值(如π值精确计算已经成为评价电脑性能的最佳方法之一);结合有关教学内容介绍古希腊及中国古代的割圆术,使学生初步感受数学的逼近思想以及数学在不同文化背景下的内涵;作为数学欣赏,介绍尺规作图与几何三大难题、黄金分割、哥尼斯堡七桥问题等专题,使学生感受其中的数学思想方法,领略数学命题和数学方法的美学价值。
(3)在统计与概率部分,可以介绍一些有关概率论的起源、掷硬币试验、布丰(Buffon)投针问 题与几何概率等历史事实,统计与概率在密码学等方面的应用,这样可以使学生对人类把握随机现象的历程有一个了解,对于学生进一步学习与发展有一定的激励作用。
学科的发展也有历史,数学史是初中数学的重要组成部分。数学课程应适当反映数学的历史、应用和发展趋势,数学对推动社会发展的作用,数学的社会需求,社会发展对数学发展的推动作用,数学科学的思想体系,数学的美学价值,数学家的创新精神等等。数学课程应帮助学生了解数学在人类文明发展中的作用,逐步形成正确的数学观。为此,中学数学课程提倡体现数学的文化价值,并在适当的内容中提出对“数学文化”的学习要求,同时设立“数学史选讲”等专题,让数学史与中学数学教育有机整合。
关键词:中学;数学;教育;数学史
数学教材中有关于数学史的内容,它不在教学范围之列,往往被当成课外阅读内容,甚至连看也不看而被忽视了。新课改中,初中数学史被重新认识,它可以帮助学生更全面的认识数学学科,理解数学价值,激发数学兴趣,提升学生的人文科学素养。
一、把数学史看作理解数学的途径
忘掉历史,也就失去了未来,对数学的把握需要了解数学史。
(1)认识数学的发展规律,了解榜样的激励作用,减少学生数学学习时走“弯路”。数学史让我们认识数学发展的规律,了解昨天,指导今天,预见明天。从前人研究数学的经验教训中获取鼓舞和力量,以指导和推动我们今天的数学学习和研究,少走弯路。医治学生“专爱碰壁”毛病的良药之一就是让他们学一些数学史和科学史,不要把宝贵的青春浪费在徒劳的“研究”上。平时的教学中,要结合数学史教育,引导学生把精力用在基础知识的学习和基本技能的提高上,多做一些有意义的探究活动,以适应新课改学习方式的需要。数学思想形成中的曲折与艰辛以及那些伟大的探索者的失败与成功还可以使学生体会到,数学不仅仅是训练思维的体操,也不仅仅是科学研究的工具,它有着丰富的人文内涵。
(2)了解数学理论发展的历史背景,加深理解数学理论、公式、定理和数学思维。一般说来,历史不仅可以给出一种确定的数学知识,还可以给出相应知识的创造过程。对这种创造过程的了解,可以使学生体会到一种活的、真正的数学思维过程,而不仅仅是教科书中那些千锤百炼、天衣无缝,同时也相对地失去了生气与天然性、已经被标本化了的数学。从这个意义上说,历史可以引导我们创造一种探索与研究的课堂气氛,而不是单纯地传授知识。它既可以激发学生对数学的兴趣,培养他们的探索精神,而历史上许多著名问题的提出与解决方法还十分有助于他们理解与掌握所学的内容。写在书本上的数学公式、定理、理论都是前人苦心钻研经过无数次的探索、挫折和失败才形成的,是在当时社会生产、人们的哲学思想、数学家的独创精神联系在一起的活生生的数学。但是,我们从书本的条文上,已看不到数学成长、发展的生动的一面,而只看到数学的浓缩的形式,这就妨碍我们对这些数学理论的深刻理解。
(3)抓住数学历史名题,丰富教学内容,展现学习数学新途经。对于那些需要通过重复训练才能达到的目标,数学历史名题可以使这种枯燥乏味的过程变得富有趣味和探索意义,从而极大地调动学生的积极性,提高他们的兴趣。对于学生来说,历史上的问题是真实的,因而更为有趣;历史名题的提出一般来说都是非常自然的,它或者直接提供了相应数学内容的现实背景,或者揭示了实质性的数学思想方法,这对于学生理解数学内容和方法都是重要的;许多历史名题的提出与解决与大数学家有关,让学生感到他本人正在探索一个曾经被大数学家探索过的问题,或许这个问题曾难住过许多有名的人物,学生会感到一种智力的挑战,也会从学习中获得成功的享受,这对于学生建立良好的情感体验无疑是十分重要的;最后,历史名题往往可以提供生动的人文背景。向学生展示历史上的开放性的数学问题将使他们了解到,数学并不是一个静止的、已经完成的领域,而是一个开放性的系统,认识到数学正是在猜想、证明、犯错误、修正错误中发展进化的,数学进步是对传统观念的革新,从而激发学生的非常规思维,使他们感受到,抓住恰当的、有价值的数学问题将是激动人心的事情。
二、数学史应该融入中学数学教育
将数学史融入初中数学。结合整个中学数学教材内容,通盘计划,全面安排;应以历史唯物主义观点选取数学史料对学生进行介绍;还应注意学生的可接受性原则。具体说来,数学史与中学数学教育的内容整合可从以下几方面入手:
(1)在数与代数部分,可以穿插介绍代数及代数语言的历史,并将促成代数兴起与发展的重要人物和有关史迹的图片呈现在学生的面前,也可以介绍一些有关正负数和无理数的历史、一些重要符号的起源与演变、与方程及其解法有关的材料(如《九章算术》、秦九韶法)、函数概念的起源、发展与演变等内容。
(2)在空间与图形部分,可以通过以下线索向学生介绍有关的数学背景知识:介绍欧几里得《几何原本》,使学生初步感受几何演绎体系对数学发展和人类文明的价值;介绍勾股定理的几个著名证法及其有关的一些著名问题,使学生感受数学证明的灵活、优美与精巧,感受勾股定理的丰富文化内涵;介绍机器证明的有关内容及我国数学家的突出贡献;简要介绍圆周率π的历史,使学生领略与π有关的方法、数值、公式、性质的历史内涵和现代价值(如π值精确计算已经成为评价电脑性能的最佳方法之一);结合有关教学内容介绍古希腊及中国古代的割圆术,使学生初步感受数学的逼近思想以及数学在不同文化背景下的内涵;作为数学欣赏,介绍尺规作图与几何三大难题、黄金分割、哥尼斯堡七桥问题等专题,使学生感受其中的数学思想方法,领略数学命题和数学方法的美学价值。
(3)在统计与概率部分,可以介绍一些有关概率论的起源、掷硬币试验、布丰(Buffon)投针问 题与几何概率等历史事实,统计与概率在密码学等方面的应用,这样可以使学生对人类把握随机现象的历程有一个了解,对于学生进一步学习与发展有一定的激励作用。
学科的发展也有历史,数学史是初中数学的重要组成部分。数学课程应适当反映数学的历史、应用和发展趋势,数学对推动社会发展的作用,数学的社会需求,社会发展对数学发展的推动作用,数学科学的思想体系,数学的美学价值,数学家的创新精神等等。数学课程应帮助学生了解数学在人类文明发展中的作用,逐步形成正确的数学观。为此,中学数学课程提倡体现数学的文化价值,并在适当的内容中提出对“数学文化”的学习要求,同时设立“数学史选讲”等专题,让数学史与中学数学教育有机整合。