论文部分内容阅读
针对Elman神经网络在预测空气质量指数(AQI)时易受到数据非平稳性的影响导致预测趋势良好但准确度较低的问题,提出以互补集合经验模态分解(Complementary Ensemble Empirical Mode Decomposition,CEEMD)为基础的CEEMD-Elman模型.应用CEEMD对AQI序列分解成不同时间尺度上的本征模态函数分量和剩余分量,进而首次将对非平稳的AQI序列的预测研究转化为对多个平稳的本征模态函数分量的研究.分别与Elman单一模型、EMD-Elman模型、BP单一模