论文部分内容阅读
为了对田块尺度土壤有机质进行空间反演并提高模型精度和稳定性,该文以黑龙江省黑土带41.3 hm~2田块为例,获取2016年5月中下旬两期(受限于拍摄周期和天气原因而选择不同卫星影像,2016年5月17日Landsat 8影像和5月25日Sentinel-2A影像)裸土时期遥感影像和4 m分辨率DEM数据;分析单期影像与土壤有机质(soil organic matter,SOM)的关系,两期影像所包含的土壤含水量变化信息与地形因素对SOM预测模型精度的影响,建立基于BP神经网络的SOM遥感反演模型。结