论文部分内容阅读
Rho kinase inhibitor fasudil hydrochloride has been shown to reduce cerebral vasospasm, to inhibit inflammation and apoptosis and to promote the recovery of neurological function. However, the effect of fasudil hydrochloride on claudin-5 protein expression has not been reported after cerebral ischemia/reperfusion. Therefore, this study sought to explore the effects of fasudil hydrochloride on blood-brain barrier permeability, growth-associated protein-43 and claudin-5 protein expression, and to further understand the neuroprotective effect of fasudil hydrochloride. A focal cerebral ischemia/reperfusion model was established using the intraluminal suture technique. Fasudil hydrochloride (15 mg/kg) was intraperitoneally injected once a day. Neurological deficit was evaluated using Longa’s method. Changes in permeability of blood-brain barrier were measured using Evans blue. Changes in RhoA, growth-associated protein-43 and claudin-5 protein expression were detected using immunohistochemistry and western blotting. Results revealed that fasudil hydrochloride noticeably contributed to the recovery of neurological function, improved the function of blood-brain barrier, inhibited RhoA protein expression, and upregulated growth-associated protein-43 and claudin-5 protein expression following cerebral ischemia/reperfusion. Results indicated that Rho kinase exhibits a certain effect on neurovascular damage following cerebral ischemia/reperfusion. Intervention targeted Rho kinase might be a new therapeutic target in the treatment of cerebral ischemia/reperfusion.
Rho kinase inhibitor fasudil hydrochloride has been shown to reduce cerebral vasospasm, to inhibit inflammation and apoptosis and to promote the recovery of neurological function. However, the effect of fasudil hydrochloride on claudin-5 protein expression has not been reported after cerebral ischemia / reperfusion. Thus, this study sought to explore the effects of fasudil hydrochloride on blood-brain barrier permeability, growth-associated protein-43 and claudin-5 protein expression, and to further further the neuroprotective effect of fasudil hydrochloride. A focal cerebral ischemia / reperfusion model was established using the intraluminal suture technique. Fasudil hydrochloride (15 mg / kg) was intraperitoneally injected once a day. Neurological deficit was evaluated using Longa’s method. Changes in permeability of blood-brain barrier were measured using Evans blue. Changes in RhoA, growth -associated protein-43 and claudin-5 protein expression were detected using immunohistochemi stry and western blotting. Results showed that fasudil hydrochloride noticeably contributed to the recovery of neurological function, improved the function of blood-brain barrier, inhibited RhoA protein expression, and upregulated growth-associated protein-43 and claudin-5 protein expression following cerebral ischemia / reperfusion. Results indicated that Rho kinase exhibits a certain effect on neurovascular damage following cerebral ischemia / reperfusion. Intervention targeted Rho kinase might be a new therapeutic target in the treatment of cerebral ischemia / reperfusion.