PIM-1 as an artificial solid electrolyte interphase for stable lithium metal anode in high-performan

来源 :能源化学 | 被引量 : 0次 | 上传用户:cs444444
下载到本地 , 更方便阅读
声明 : 本文档内容版权归属内容提供方 , 如果您对本文有版权争议 , 可与客服联系进行内容授权或下架
论文部分内容阅读
Lithium metal anode is a promising electrode with high theoretical specific capacity and low electrode potential.However,its unstable interface and low Coulombic efficiency,resulting from the dendritic growth of lithium,limits its commercial application.PIM-1 (PIM:polymer of intrinsic microporosity),which is a polymer with abundant micropores,exhibits high rigidity and flexibility with contorted spirocenters in the backbone,and is an ideal candidate for artificial solid electrolyte interphases (SEI).In this work,a PIM-1 membrane was synthesized and fabricated as a protective membrane on the surface of an electrode to facilitate the uniform flux of Li ions and act as a stable interface for the lithium plating/stripping process.Nodule-like lithium with rounded edges was observed under the PIM-1 membrane.The Li@PIM-1 electrode delivered a high average Coulombic efficiency (99.7%),excellent cyclability (80% capacity retention rate after 600 cycles at 1 C),and superior rate capability (125.3 mAh g-1 at 10 C).Electrochemical impedance spectrum (EIS) showed that the PIM-1 membrane could lower the diffusion rate of Li+ significantly and change the rate-determining step from charge transfer to Li+ diffusion.Thus,the PIM-1 membrane is proven to act as an artificial SEI to facilitate uniform and stable deposition of lithium,in favor of obtaining a compact and dense Li-plating pattern.This work extends the application of PIMs in the field of lithium batteries and provides ideas for the construction of artificial SEI.
其他文献
Non-precious metal nitrogen-doped carbonaceous materials have attracted tremendous attention in the field of electrochemical energy storage and conversion.Herein,we report the designed synthesis of a novel series of Co-N-C nanocomposites and their evaluat
Ethyl-(2,2,2-trifluoroethyl) carbonate (ETFEC) is investigated as a solvent component in high-voltage electrolytes for LiNi0.5Mn1.5O4 (LNMO).Our results show that the self-discharge behavior and the high temperature cycle performance can be significantly
Direct electrochemical reduction of CO2 into valuable chemicals and fuel is one of the most promising approaches to address the current energy crisis and lower CO2 emission.Recently,numerous metal-organic framework (MOF) and their derived materials have e
Electrochemical water splitting into hydrogen and oxygen is a promising strategy for future renewable energy conversion devices.The oxygen evolution reaction (OER) is considered as the bottleneck reaction in an overall water splitting system because it in
The electro-catalytic properties can be effectively optimized by designing bimetallic alloy nanoparticles with high-content less-active metal to enhance the competence of more-active noble metal. Herein, a one-pot hydrothermal approach is demonstrated for
Among various perylenediimide (PDI)-based small molecular non-fullerene acceptors (NFAs),PDI dimer can effectively avoid the excessive aggregation of single PDI and improve the photovoltaic performance.However,the twist of perylene core in PDI dimer will
Various solid electrolytes,such as sulfides (10-3-10-2 S cm-1)and oxides (10-4-10-3 S cm-1) are explored and developed to solve the safety problems in commercial Li-ion batteries using liquid flammable electrolytes.Metallic Li anode is required for pursui
Interfacial layer has a significant impact on the achievement of highly efficient organic–inorganic hybrid perovskite solar cells (PSCs). Here, we introduced a nano-ZnMgO (magnesium doped ZnO, abbreviated as ZnMgO) as interfacial layer between [6, 6]-Phen
Silicon nanowires of high purity and regular morphology are of prime importance to ensure high specific capacities of lithium-ion batteries and reproducible electrode assembly process.Using nickel formate as a metal catalyst precursor,straight silicon nan
Kesterite Cu2ZnSn(S,Se)4 (CZTSSe) solar cells have drawn worldwide attention for their promising photovoltaics performance and earth-abundant element composition,yet the record efficiency of this type of device is still far lower than its theoretical conv