论文部分内容阅读
为了解决多域卷积神经网络(MDNet)在目标快速移动和外观剧烈变化时发生的模型漂移问题,提出了自注意力多域卷积神经网络(SAMDNet),通过引入自注意力机制从通道和空间两个维度来提升追踪网络的性能。首先,利用空间注意力模块将所有位置上的特征的加权总和选择性地聚合到特征图中的所有位置上,使得相似的特征彼此相关;然后,利用通道注意力模块整合所有特征图来选择性地强调互相关联的通道的重要性;最后,融合得到最终的特征图。此外,针对MDNet算法因训练数据中存在较多相似但属性不同的序列所造成的网络模型分类不准