论文部分内容阅读
为解决设备监测数据具有维数高、非线性且退化过程中存在多阶段的问题,提出了一种基于非线性数据融合和多阶段退化的设备寿命预测模型.首先,利用神经网络理论中的自编码器对表征设备退化的多维参数进行了融合,构建出设备的退化指示量;然后,利用CUSUM算法提取出设备退化过程中的分段点;最后,构建了多阶段维纳退化模型,从而实现对设备寿命的预测.利用航空发动机状态监测数据对所提模型进行了验证,剩余寿命预测的平均误差为0.254 5,低于传统的基于线性数据融合方法和基于单阶段维纳过程退化模型的寿命预测方法.结果证明,