论文部分内容阅读
AdaBoost算法已被广泛地应用于人脸检测系统中,但往往需要大量的训练样本。针对其训练过程复杂冗长的缺陷,选择研究基于少量训练样本的人脸检测问题。采用协方差特征代替图像统计的直方图进行特征提取。为达到更好的分类效果,应用基于Fisher判别式分析的线性超平面分类器,通过AdaBoost算法构成多层级联分类器进行人脸检测。在小数据库里可以看到,与目前用于多数人脸检测系统的类Haar特征相比,该算法在减少训练样本的同时能获得更好的检测效果。