【摘 要】
:
已有的急速学习机(Extreme Learning Machine)的学习精度受隐节点数目的影响很大。无论是已提出的单隐层急速学习机还是多隐层神经网络,都是先确定隐藏层数,再通过增加每一层的
论文部分内容阅读
已有的急速学习机(Extreme Learning Machine)的学习精度受隐节点数目的影响很大。无论是已提出的单隐层急速学习机还是多隐层神经网络,都是先确定隐藏层数,再通过增加每一层的神经元个数来提高精度。但当训练集规模很大时,往往需要引入很多的隐节点,导致违逆矩阵计算复杂度大,从而不利于学习效率的提高。提出逐层可加的急速学习机MHL-ELM(Extreme Learning Machine with Incremental Hidden Layers),其思想是首先对当前隐藏层神经元(数目不大且不
其他文献
对我院2005年2月-2008年1月4879例产妇中发生晚期产后出血的13例进行临床总结分析,探讨引发晚期产后出血的相关原因与护理对策。结果表明,76.9%的晚期产后出血发生在产后2周以内,
轮廓角点检测与特征构造是基于轮廓角点的RSI多目标识别算法的关键。针对现有的轮廓角点检测方法在准确性与抗噪能力的不足,提出一种改进的轮廓角点检测算法,构造一种基于目标主轴与轮廓角点的特征串,利用动态规划算法计算特征串间的相似度进行目标识别。算法中把目标主轴的旋转角度作为目标的姿态角。实验证明该算法能够快速地识别出目标的旋转角度,对目标进行分类,且具有平移不变性、旋转不变性、尺度不变性以及较好的抗噪
采用AAM定位特征点、尺度不变特征变换(SIFT)描述特征的方式提出一种基于AAM-SIFT的表情特征提取方法。该方法用特征点周围区域梯度方向直方图描述表情特征;同时根据不同子区域
我科自2008年1月以来,用一次性输液器的茂菲氏滴管自制喂药器,取得满意效果,现介绍如下。