论文部分内容阅读
针对基于惯性传感器的步态识别方法在动态情况下表现不佳且计算复杂度较高的问题,提出一种基于重构吸引子融合盒近似几何(BAG)方法。首先,将人类步态视作一个动态系统,根据Taken理论在潜在空间重构吸引子;然后,利用奇异谱分析方法获得奇异值,并将其应用于惯性传感器的标量测试;最后,利用盒近似几何方法完成步态识别。针对20个不同对象的模式分析了各种参数对步态识别性能的影响,实验结果表明,相比其它几种步态识别方法,本文方法能够实现高精度的识别且具有较低的计算复杂度。