论文部分内容阅读
利用248nm纳秒准分子激光,采用掩模投影和石英玻璃前表面直写刻蚀的方法,研究了激光脉冲能量密度、重复频率、扫描次数对微通道裂损的影响规律,分析了石英玻璃激光刻蚀及裂损的机理。结果表明,248nm纳秒准分子激光刻蚀石英玻璃的机理为光致电离及热烧蚀的共同作用;无裂损刻蚀JGS1型石英玻璃的激光能量密度阈值范围为16~30J·cm~(-2),刻蚀率可达每脉冲500nm;随着激光重复频率及扫描次数的增加,微通道容易因热积累及等离子体微爆炸冲击作用而裂损。基于优化的激光加工参数,当微通道宽度小于100μm时,可以实现无裂损的直线型(深度小于或等于50μm)及圆弧型(深度小于或等于28.5μm)微通道的加工。
The effects of laser pulse energy density, repetition frequency and scanning times on microchannel cracking were studied by using 248 nm nanosecond excimer laser, mask projection and direct write etching on the front surface of quartz glass. The effects of quartz glass laser Etching and cracking mechanism. The results show that the 248nm nanosecond excimer laser etching quartz glass mechanism is photoionization and thermal ablation. The laser energy density threshold range of non-cracked etching JGS1 quartz glass is 16 ~ 30J · cm ~ ( -2). The etching rate can reach 500nm per pulse. With the increase of laser repetition frequency and scanning times, microchannels are easily damaged by heat accumulation and plasma micro-explosion impact. Based on optimized laser processing parameters, straight-line (less than or equal to 50 μm in depth) and circular (less than or equal to 28.5 μm) microchannels can be machined without cracks when the microchannel width is less than 100 μm.