论文部分内容阅读
网络作弊检测是搜索引擎的重要挑战之一,该文提出基于遗传规划的集成学习方法(简记为GPENL)来检测网络作弊。该方法首先通过欠抽样技术从原训练集中抽样得到t个不同的训练集;然后使用c个不同的分类算法对t个训练集进行训练得到t*c个基分类器;最后利用遗传规划得到t*c个基分类器的集成方式。新方法不仅将欠抽样技术和集成学习融合起来提高非平衡数据集的分类性能,还能方便地集成不同类型的基分类器。在WEBSPAM-UK2006数据集上所做的实验表明无论是同态集成还是异态集成,GPENL均能提高分类的性能,且异态集成比