论文部分内容阅读
在初中数学深入的学习过程中,题中的不变量往往是解题的突破口.这里,以四例说明.例1在一张正方形纸片的内部给出了2016个点,连同正方形的4个顶点共有2020个点,按下列规则将这张纸片剪成一些三角形:(1)每个三角形的顶点都在给出的2020个点中;(2)每个三角形内部不再有这2020个点中的点.问:最多可以剪出多少个三角形?
In the junior high school mathematics in-depth learning process, the problem invariants are often the breakthrough .There are four examples.Example 1 gives a total of 2016 dots inside a square piece of paper, together with four squares The vertex has a total of 2020 points and is cut into triangles according to the following rules: (1) The vertices of each triangle are given in 2020 points; (2) There are no more 2020 in each triangle Point in the point Q: How many triangles can cut out?