论文部分内容阅读
目前,一些主流的判别学习算法只能优化光滑可导的损失函数,但在自然语言处理(natural language processing,简称NLP)中,很多应用的直接评价标准(如字符转换错误数(character error rate,简称CER))都是不可导的阶梯形函数.为解决此问题,研究了一种新提出的判别学习算法——最小化样本风险(minimum samplerisk,简称MSR)算法.与其他判别训练算法不同,MSR算法直接使用阶梯形函数作为其损失函数.首先,对MSR算法的时空复杂性作了分析和提高;同时,提