论文部分内容阅读
针对现有的应用于网络入侵检测中的人工免疫系统存在的缺陷,在Kim小组的动态克隆选择算法的基础上,提出了改进的网络入侵检测模型。在该模型中,提出产生少量的自体模式类对正常访问数据进行处理,加快其访问速度;通过动态增减自体集合来适应网络环境的变化,并且解决传统AIS中自体集合庞大的问题;采用基于约束的检测器表示抗体,采取任意R位间隔匹配规则来判定抗体与抗原之间的匹配,使用分割算法来解决抗体与自体抗原的匹配情况。最后,对该模型进行了网络入侵检测仿真实验,并与相同实验条件下的动态克隆选择算法的实验结果进行了对比,