论文部分内容阅读
为提高支持向量机(SVM)集成的训练速度,提出一种基于凸壳算法的SVM集成方法,得到训练集各类数据的壳向量,将其作为基分类器的训练集,并采用Bagging策略集成各个SVM。在训练过程中,通过抛弃性能较差的基分类器,进一步提高集成分类精度。将该方法用于3组数据,实验结果表明,SVM集成的训练和分类速度平均分别提高了266%和25%。