论文部分内容阅读
居民地匹配是多源空间数据融合和多尺度数据更新的核心技术环节。针对居民地匹配算法中出现的指标权重、匹配判定的总相似性阈值和各指标相似性阈值的准确量化难题,引入人工神经网络技术,利用人工神经网络在处理多要素、复杂性、模糊性分类问题上的优势,将形状相似度、方向相似度、位置相似度、大小相似度和重叠面积相似度作为输入,采用人机结合的神经网络训练策略,对3层BP神经网络进行训练,针对不同的匹配场景获取神经网络的权重向量集,实现了多指标综合衡量的居民地匹配。实验表明,该方法解决了多指标匹配算法存在的理论严谨性问题