论文部分内容阅读
为了提高粒子滤波在视频跟踪中的稳定性,解决粒子多样性衰退的问题,提出了一种基于粒子群优化粒子滤波的视频目标跟踪方法 .该方法在粒子滤波跟踪过程中,首先使用均值漂移方法来确定全局最优位置.同时,设计了一种使用高斯随机数的优化速度,并通过有效粒子数阈值来作为停止优化的判决条件.通过优化过程,使粒子向具有更高似然度的区域收敛.对序列图像的跟踪实验结果表明:该算法提高了估计精度,能够有效地跟踪目标,具有较好的鲁棒性.