论文部分内容阅读
本文为在传统的说话人识别理论研究中"较少的特征参数量不能与较高的识别率共存"的难题找到了一种解决方案。本文基于压缩感知的理论,利用行阶梯观测矩阵进行信号的投影,改变了传统的梅尔频率倒谱系数(Mel-frequency cepstral coefficient,MFCC)参数,从而提出了一种新的识别参数CSMFCC(Compressed sensing-MFCC)。该参数不仅使得参数存储量降低到少于原存储量的1/n(n为行阶梯观测矩阵的压缩比),而且明显提高了系统的鲁棒性。通过仿真实验证明了当压缩比n为4时