论文部分内容阅读
针对Adaboost人脸检测算法在分类器训练过程中耗时较多的问题,对Adaboost算法进行了详细分析,提出了加快寻找每一轮最佳弱分类器的四点均值法。该方法对每个特征,计算所有训练样本对应的特征值,并将其从小到大排序,求相邻的4个特征值的平均值,该平均值作为阈值,计算错误率,找出最佳弱分类器。减少特征量,修改弱分类器权重,加快收敛速度,使用不同遮挡部位的人脸样本训练分类器,实现了局部遮挡人脸的检测。实验结果表明,该方法明显提高了训练速度,缩短训练时间,并能较准确地检测局部遮挡人脸。