论文部分内容阅读
非负矩阵分解(NMF)是一种有效提取特征的方法,但算法中参数的随机初始化使得迭代求解速度慢,且易陷入局部极小的问题。针对以上问题,提出了一种自适应FCM-NMF的方法,该方法利用模糊C聚类方法(FCM)获得相似性关系矩阵,能为NMF参数的初始化提供较好的初值,从而有效解决了上述问题。通过在两个人脸库的实验结果显示,收敛速度明显高于随机赋初值的方法,识别率也有所提高。