论文部分内容阅读
为深入研究电动汽车机电复合回馈制动过程,评估各种回馈制动控制策略的有效性,设计了一种缩小比例的电动汽车机电复合回馈制动模拟试验台。基于相似原理,详细推导出了缩比试验和原型试验物理量之间相似关系的系列方程;利用模块化思想设计了试验台结构,根据电动汽车制动转矩的实际控制过程,确定了试验台控制方案,并采用虚拟仪器技术开发了试验台的测控软件。在制动能量最大化机电复合回馈制动模糊控制策略下,以试验台电机转速为1 530 r/min为初始转速(对应初始制动车速为60 km/h),进行匀减速制动试验,实际制动转矩能很好地跟随理论需求制动转矩变化而变化;以超级电容吸收的电机回馈能量计算,相对消耗的总制动能,能量回馈率达到了5.1%。试验结果表明,模拟试验台较好地实现了电动汽车机电复合回馈制动过程,并可用于评估控制策略的有效性。
In order to further study the electromechanical composite feedback braking process of electric vehicles and evaluate the effectiveness of various feedback braking control strategies, a miniaturized electro-mechanical composite feedback brake simulation test stand for electric vehicles is designed. Based on the principle of similarity, a series of equations were deduced in detail, and the structure of the test rig was designed by modularization. According to the actual control process of braking torque of electric vehicle, the control of test rig Program, and the use of virtual instrument technology developed a test bed measurement and control software. Under the braking energy maximization electromechanical compound feedback braking fuzzy control strategy, with the test bed motor speed of 1 530 r / min as the initial speed (corresponding to the initial braking speed of 60 km / h), uniform deceleration brake test, The actual braking torque can change well with the theoretical demand of braking torque. The energy recovery rate of the motor with the supercapacitor is 5.1% compared with the total braking energy consumed. The test results show that the simulation test bed can well realize the electromechanical composite feedback braking process of the electric vehicle and can be used to evaluate the effectiveness of the control strategy.