论文部分内容阅读
将集群智能思想引入粒子滤波,提出一种新颖的基于人工鱼群算法的粒子滤波器.该算法利用人工鱼群算法中觅食行为和聚群行为的交替,使得先验粒子不断向高似然域移动,从而改善粒子分布,提高估计精度.此外,利用Kullback信息描述聚群行为产生的粒子分布与似然分布的差别,通过迭代发现Kullback信忠是递减的,从而证明该算法是合理的.仿真实验证明,这种算法是一种有效的粒子滤波算法,其滤波性能优于扩展卡尔曼滤波和常规粒、子滤波.