论文部分内容阅读
针对传统LANDMARC室内定位算法受室内环境的干扰存在定位精度不高,波动大的问题,提出一种基于CKF的改进LANDMARC室内定位算法。该算法首先通过传统LANDMARC算法得到待定位目标的状态预估值;然后将得到的状态预估值作为观测量并用容积卡尔曼滤波(CKF)算法对其进行滤波处理,以提高算法的定位精度并降低定位结果的波动;最后用滤波处理后的结果代替LANDMARC得到的预估值作为待定位目标的状态估计。实验研究表明,所提算法误差在0.5 m以下的标签达到60%,与传统LANDMARC定位算法和经由