论文部分内容阅读
提出了一种基于支持向量机(SVM)的并行式时空二维融合路段交通量预测方法,对时间SVM和空间SVM分别在两个并行的操作系统模型中进行,以此降低时间成本.并将时间维SVM预测、空间维SVM预测与基于SVM的数据时空二维线性融合预测结果进行了对比,通过对比表明,时空二维线性融合预测的误差很明显比其它两种方法预测的结果误差要小得多,因此本文提出的时空二维融合可大大的提高预测精度、尤其是当有突发因素(如:交通事故发生)时,本文所提出的方法可在很大程度上避免一维时间源数据融合的结构性系统误差.