【摘 要】
:
在祁连圆柏的生长管理工作中,虫害是影响其生长质量的重要因素,其常见的虫害类型比较多,不同虫害有相应的防治方法,如果防治措施不及时、不到位,势必会对圆柏生长带来严重危害.本文结合互助县祁连圆柏种植情况,对其虫害防治的相关技术措施进行了分析.
【机 构】
:
青海省海东市互助县林业和草原局,青海互助,810599
论文部分内容阅读
在祁连圆柏的生长管理工作中,虫害是影响其生长质量的重要因素,其常见的虫害类型比较多,不同虫害有相应的防治方法,如果防治措施不及时、不到位,势必会对圆柏生长带来严重危害.本文结合互助县祁连圆柏种植情况,对其虫害防治的相关技术措施进行了分析.
其他文献
为使医疗体系内非同种数据得到有效区分,从而为诊疗意见的生成提供可靠参考条件,设计基于模糊聚类的智慧医院多源异构数据整合系统.利用多源型处理电路,输出异构数据统筹元件与量化整合芯片连接所需的应用电子量,完成整合系统硬件执行环境的搭建.在此基础上,对模糊数据集合进行标定处理,借助相似模糊聚类矩阵,设置标准的数据整合函数,完成系统的软件执行环境搭建.结合相关硬件设备结构体系,实现基于模糊聚类的智慧医院多源异构数据整合系统的顺利应用.实验结果显示,与拆分型整合系统相比,模糊聚类型整合系统能够更好地应对多源异构医疗
使用人工稽查方法判别纸质工单的业务异常情况,数据积压过大,导致异常工单判别结果不精准.面对该问题,提出了基于序列标注的业务异常工单判别方法.使用注意力机制作为业务管控规则,指引业务异常问题的稽查.使用语义消歧中的柱状搜索方法进行解码,完成知识融合.采用序列标注方法构建业务管控规则知识图谱,消除积压数据.解析新增的稽查目标,确定稽查主体.设计稽查核实步骤,实现业务管控支撑智能化.采用深度学习技术,智能解析稽查工单原始信息,判断导致异常的原因,实现稽查工单智能判别.由实验结果可知,该方法用电数据幅值波动范围与
在传播性公共卫生疫情环境下,为了减少传染风险,医疗机构需要对医护人员和患者进行防护状态下的身份识别.文中基于深度学习算法提出了一种步态识别架构顺序残差卷积网络(SRCN),用来提取基于卷积主干的时空信息,从而实现对个体行走模式的学习.利用信息提取器(BIE)和多帧聚合器(MFA)两个子模块对图像时空信息进行提取,使用残差神经网络(ResNet)提取每幅图像的空间特征.MFA将整合并提取所有特征从而实现步态识别.在CASIA-B公开数据集进行的实验表明,文中所提出的方法在3种模态下准确率分别达到了95.2%
针对电网潜在的电缆火灾风险因素智能分析问题,文中从电缆运行、电缆防火和电缆状态3个方面构建了电缆火灾致灾因素评估体系,进一步提出了基于层次分析法(AHP)与逼近理想点法(TOPSIS)的电缆火灾致灾因素分析算法.该算法通过AHP法获取到各个二级因素的权重系数,并进一步通过TOPSIS法评估计算得到电力电缆发生火灾的风险.算例分析结果表明,文中所提出的算法能够获取电力电缆火灾致灾的主要因素,建立的模型能较为准确地评估电力电缆发生火灾的风险,为电力电缆火灾的预防提供了理论参考.
为解决传统加密方案得到的类噪声图像在传输过程中常常会因其视觉效果而受到攻击的问题,提出一种基于混沌Hopfield神经网络的具有视觉意义的双图像加密算法.对混沌Hopfield神经网络迭代生成随机数矩阵,与两幅压缩后的明文图像组合后进行离散余弦变换.通过生命游戏算法生成置乱矩阵来进行置乱.将置乱后的图像分为三部分,通过逆离散余弦变换分别嵌入到彩色载体图像的R、G、B分量中.实验结果表明,该算法密钥空间足够大,传输效率高,密钥敏感性强,能够抵御各种攻击,具有较好的安全性.
提出了一种基于电压扰动数据挖掘的微电网保护方法.系统故障的发生与电压骤降有关,自适应累积和算法可以快速检测到电压骤降,其他非故障事件(如电机启动、变压器通电、电容器或重载开关)也可能导致电压下降.为了区分故障和非故障事件,利用短时傅里叶变换(STFT)对一个周期的电压波形进行预处理,提取并构造有效的扰动特征,然后在决策树(DT)中使用这些特征进行判别.所提出的保护方法在并网或孤岛模式以及径向或网状拓扑结构的故障或非故障条件下进行了测试.仿真研究表明,对于对称事件,只使用两个特征,对于非对称事件只使用6个特
针对现有不同领域中所使用的安防系统架构,采用基于边缘计算的高可用、实时处理的通用智能安防系统三层架构,在边缘设备和云端中间增加边缘计算物联网设备,通过不同的服务节点完成多样性服务计算实验.实验结果表明,该系统比传统集中式计算架构具有处理性能高、节省服务器的存储容量、减少服务器的硬件成本等特点,可作为智能安防系统的通用架构.
近些年来因心血管疾病导致的人类死亡人数不断增加,心律失常是心血管疾病发病前的常见症状.为了提高心电图对心律失常分类的效率和准确率,使医生能对心律失常及时地作出诊断和治疗,提出一种基于二维卷积神经网络模型的心律失常分类方法.该方法使用美国麻省理工学院提供的研究心律失常的MIT-BIH数据库来生成实验数据集对网络进行训练和测试,在心律失常分类测试中分类准确率达到了98.6%,实现了对心电图信号心律失常的高精度自动分类.
在信号调理电路中,运算放大器是信号调理电路的核心器件.零漂、温漂和共模电压等变化会引起输出误差,如果输入信号中混有噪声或运算放大器固有噪声过大,高精度ADC(Analog-to-Digital Convertor)就失去了意义.基于上述原因,文中提出一种补偿电路设计方法,该电路选型Ti公司的OPA192精密运算放大器,通过等比例缩小电阻值和添加反馈电容限制带宽的方法来减弱噪声,并使用Pspice软件对运算放大器的交流噪声进行仿真验证.仿真结果表明,该反馈补偿电路将运放交流总噪声减小85.05%,提高了AD
高集成度微波组件具有生产难度大,过程问题多,返修成本高的特点,该文提出了高集成度微波组件加电前通用检测方法,并对检测后的产品进行了质量数据的统计与分析,验证了该方法的可靠性.