【摘 要】
:
为保证设备正常运行并准确预测轴承剩余寿命,提出二维卷积神经网络与改进WaveNet组合的寿命预测模型。为克服未优化的递归网络在预测训练过程中易出现梯度消失问题,该模型引入了WaveNet时序网络结构。针对原始WaveNet结构不适用滚动轴承振动数据情况,将WaveNet结构改进与二维卷积神经网络结合应用于滚动轴承寿命预测。模型利用二维卷积网络提取一维振动序列的特征,随后特征输入WaveNet并进行
【机 构】
:
空军工程大学研究生学院,空军工程大学防空反导学院
【基金项目】
:
陕西省自然科学基础研究计划资助项目。
论文部分内容阅读
为保证设备正常运行并准确预测轴承剩余寿命,提出二维卷积神经网络与改进WaveNet组合的寿命预测模型。为克服未优化的递归网络在预测训练过程中易出现梯度消失问题,该模型引入了WaveNet时序网络结构。针对原始WaveNet结构不适用滚动轴承振动数据情况,将WaveNet结构改进与二维卷积神经网络结合应用于滚动轴承寿命预测。模型利用二维卷积网络提取一维振动序列的特征,随后特征输入WaveNet并进行滚动轴承的预测寿命。改进模型相比于深度循环网络计算效率更高、结果更准确,相比于原始CNN-WaveNet
其他文献
为了解决推荐模型中无法挖掘用户兴趣多样性和捕捉用户行为序列之间的顺序信息,以及交互发生在元素级并非特征向量之间等问题,提出一种基于多头注意力机制和位置信息的xDeepFM推荐模型(extreme deep multiple attention and location information factorization machine,xDMALFM)。首先通过多头注意力机制进行不同子空间的特征深
近年来随着深度学习在多个领域取得了不错的效果,深度学习也开始应用在推荐系统,例如利用深度学习技术来捕捉高阶特征交互的NFM模型和DeepFM模型等。然而考虑到外部环境和内部感知的变化,用户的兴趣也应该随着时间动态的变化,且基于原始特征进行组合不一定能学到有效特征交互。为此尝试构建一种新的模型FG_DRFwFm,该模型能学习多特征域低阶与高阶特征交互与处理用户长期兴趣变化,并且训练特征是根据原始特征
基于折叠技术的洗牌算法具有较好的数据置乱效果,可以满足大数据抽样的前提条件。为证明置乱后的数据集在经过抽样后内部规则不被破坏,通过数据挖掘的方法对抽样前后的数据进行关联规则分析。对比所得关联规则的支持度、置信度,以及事务出现的频率,发现经过折叠洗牌算法置乱后的数据在抽样前后所得到的关联规则变化相对稳定,并通过与现有算法的时间效率以及抽样总体误差作对比,进一步在理论上得出大数据抽样具有有效性,即可以
域对抗学习是一种主流的域适应方法,它通过分类器和域判别器来学习具有可区分性的域不变特征;然而,现有的域对抗方法大多利用一阶特征来学习域不变特征,忽略了具有更强表达能力的二阶特征。提出了一种条件对抗域适应网络,通过联合建模图像的二阶表征以及特征和分类器预测之间的互协方差以便更有效地学习具有区分性的域不变特征;此外,引入了熵条件来平衡分类器预测的不确定性,以保证特征的可迁移性。提出的方法在两个常用的域
推荐系统帮助用户主动找到满足其偏好的个性化物品并推荐给用户。协同过滤算法是推荐系统中较为经典的算法,但是其会受到数据冷启动和稀疏性的限制,具有可解释性差和模型泛化能力差等缺点。针对其缺点进行研究,通过将原始的评分矩阵以用户—项目二部图的形式作为输入,将图卷积神经网络设计为一种图自编码器的变体,通过迭代的聚合邻居节点信息得到用户和项目的潜在向量表示,并在其基础上结合卷积神经网络,提出了一种基于卷积矩
针对不相关并行机调度问题,面向降低能源消耗和减少完工时间的目标,提出一种更高效的基于十进制整数编码的多目标灰狼算法。求解时,采用将资源配置与作业排序相结合的十进制整数编码方式,设计了针对多目标离散调度问题的两阶段位置更新机制。同时引入了NSGA-Ⅱ的精英保留策略,提高了算法的寻优能力,应用最大迭代次数停止准则结束循环并保留最优解。最后,通过数值实验与有代表性的前沿算法进行仿真对比,以验证所提算法的
针对元启发算法中蜉蝣优化算法(MOA)的求解精度不高、收敛速度慢、稳定性不强等缺点进行研究,提出一种黄金正弦与自适应融合的蜉蝣优化算法。引入自适应惯性权重因子增强算法的搜索和开发能力达到更好的平衡;引入融合Lévy飞行策略和黄金正弦因子进一步改善易陷入局部最优的缺点,增强种群多样性,跳出局部最优。仿真结果表明,改进算法对于测试函数在求解精度、收敛速度和寻优能力上有显著提升。同时,为验证结果的可靠性
针对标准鲸鱼算法(WOA)及部分衍生算法求解某些算例效果不佳的问题进行了研究与实验,证明了WOA"包围"过程存在零点搜索偏好陷阱;而混沌优化算法(COA)不均衡的搜索特性使得部分衍生WOA融合的混沌初始种群与群智能优化过程难以调和。为了改善上述缺陷,选用了两种混沌系统和气泡网捕猎策略,设计了一套融合式优化算法。算法采用基于适应度的基线式自适应振荡群粒划分策略指导群体行为模式,充分发挥混沌系统作用,
针对单段及多段连续体机器人运动学问题,提出分段常曲率与粒子群算法相结合的完整正逆运动学分析方法。以双段丝驱动连续体机器人为研究对象,首先设计含平移段的机器人样机;然后利用分段常曲率方法建立驱动空间与关节空间的相互映射,根据齐次变换得到关节空间至工作空间的正映射关系;最后利用线性递减权重粒子群算法实现工作空间至关节空间的逆映射。对双段连续体机器人的运动学进行仿真及逆运动学求解耗时测试,并在研制样机上
针对单一智能优化算法求解机器人路径规划时易陷入局部误区的问题,提出改进粒子群优化算法(GB_PSO)用于机器人路径规划。该算法以粒子群优化算法(particle swarm optimization,PSO)为主体,由于遗传算法(genetic algorithm,GA)和细菌觅食算法(bacterial foraging optimization algorithm,BFO)更新策略所受环境影响