论文部分内容阅读
In this study, visualizations and experiments are carried out on the influence of static and rotating magnetic fields on the characteristics of HCFC-141b gas hydrate formation, such as crystallization form, formation temperature and induction time. It has been found that a proper rotating magnetic field can considerably improve the low-pressure gas hydrate formation process, especially in increasing the formation temperature and shortening the induction time. The mor- phology of the gas hydrate formation appears rather complex and compact. However, a proper static magnetic field can make the gas hydrate crystal more organized, which will be benefit to heat transfer.
In this study, visualizations and experiments are carried out on the influence of static and rotating magnetic fields on the characteristics of HCFC-141b gas hydrate formation, such as crystallization form, formation temperature and induction time. It has been found that a proper rotating magnetic field can stabilize the low-pressure gas hydrate formation process, especially in increasing the formation temperature and shortening the induction time. However, a proper static magnetic field can make the gas hydrate crystal more organized, which will be benefit to heat transfer.