论文部分内容阅读
为了更好地解决基于学习的超分辨率算法的邻域嵌入问题,提出了一种使用k最近邻和平衡二叉树的邻域嵌入算法,该算法分为训练阶段和测试阶段。训练阶段,构建HR图像块、LR图像块的映射和平衡二叉树。测试阶段,首先将输入的去噪LR图像分离高频成分;然后训练LR特征空间,利用k最近邻寻找LR图像对应的HR图像块;最后通过高斯加权重建HR图像块,并与先前分离的高频成分合并。实验采用峰值信噪比(PSNR)、结构相似性度量(SSIM)和特征相似性度量(FSIM)评估算法的效果。从实验数据可以看出,提出的算法具有最高的PSNR