论文部分内容阅读
当前卷积神经网络结构未能充分考虑RGB图像和深度图像的独立性和相关性,针对其联合检测效率不高的问题,提出了一种新的双流卷积网络。将RGB图像和深度图像分别输入到两个卷积网络中,两个卷积网络结构相同且权值共享,经过数次卷积提取各自独立的特征后,在卷积层根据最优权值对两个卷积网络进行融合;继续使用卷积核提取融合后的特征,最后通过全连接层得到输出。相比于以往卷积网络对RGB-D图像采用的早期融合和后期融合方法,在检测时间相近的情况下,双流卷积网络检测的准确率和成功率分别提高了4.1%和3.5%。