论文部分内容阅读
目的视频行为识别一直广受计算机视觉领域研究者的关注,主要包括个体行为识别与群体行为识别。群体行为识别以人群动作作为研究对象,对其行为进行有效表示及分类,在智能监控、运动分析以及视频检索等领域有重要的应用价值。现有的算法大多以多层递归神经网络(RNN)模型作为基础,构建出可表征个体与所属群体之间关系的群体行为特征,但是未能充分考虑个体之间的相互影响,致使识别精度较低。为此,提出一种基于非局部卷积神经网络的群体行为识别模型,充分利用个体间上下文信息,有效提升了群体行为识别准确率。方法所提模型采用一种自底