论文部分内容阅读
提出一种社会网络图像标签排序算法。将SIFT特征、卷积神经网络特征以及视觉词袋模型相结合,从图像训练集中获取目标图像的视觉近邻图像集;令所有视觉近邻图像为目标图像的初始标签进行加权投票,通过对图像视觉相似度和标签语义相似度的线性融合,计算投票权值;利用目标图像及其视觉近邻图像的标签,构造标签图模型;利用加权投票结果在标签图上执行随机漫步,完成标签排序任务。实验结果验证了提出方法的有效性。