论文部分内容阅读
基于监督学习的异常入侵检测算法通常面临着训练样本不足的问题,同时,对整个历史数据集进行等同学习,没有充分考虑到网络数据模式随时间变化的特点.本文提出了一种基于小样本标记实例的数据流集成入侵检测模型,对小样本的标记数据集进行扩展,解决了训练样本不足的问题,并能够充分适应网络数据模式随时间变化的特点.实验结果表明,在小样本标记实例情况下,算法的检测性能明显优于基于所有历史数据进行入侵检测的结果.