论文部分内容阅读
为解决支持向量机中核函数的参数优化选择问题,在对粒子群算法中惯性权重和加速因子非线性化的基础上,提出一种动态非线性策略的粒子群优化算法。算法的核心是通过调整和融合惯性权重ω和加速因子c1,c2选择策略,有效控制算法的全局寻优与局部寻优能力,限定粒子的搜索范围。采用单模态和多模态标准测试函数检验策略对算法的影响,并将该算法应用于标准支持向量机非线性测试函数的拟合问题中,最后应用优化后的支持向量机解决航空发动机振动监控问题。仿真结果表明,改进后算法能有效提高最优解精度,加快收敛速度,实现支持向量机参数的