论文部分内容阅读
为了较好克服量子粒子群算法存在早熟收敛的缺点,在分析算法参数和流程的基础上,提出了一种带变异操作的改进量子粒子群优化算法。针对传统BP算法易于陷入局部极小的不足,将改进的算法应用到BP神经网络的学习过程中,修正BP网络的权值和阈值,提高其收敛性能。并将优化的BP神经网络模型应用于入侵检测中,用标准入侵检测数据对基于不同算法的BP网络进行仿真实验比较。实验结果表明,改进后的BP算法迭代次数少,收敛速度有所提高,在一定程度上提高了入侵检测率。