论文部分内容阅读
为了提高多视图半监督协同算法的性能,并针对算法应用范围受限的问题,提出了一种组合标记规则的协同训练方法。该算法将一致性与非一致性标记规则相结合,若分类器具有相同标记则将对应样本加入到相应的样本集中;若标记不同且两分类器对应的标记置信度差值超过了一定的阈值,则采用高置信度分类器的标记结果,并将样本添加到相应的样本集中。通过判断两分类器对相应样本的标记是否一致以及差异性阈值对未标记样本进行组合标记,并利用分类器差异性判断原则更新分类模型,充分利用未标记样本中的有用信息将分类器性能提高5%以上。所提出的算