论文部分内容阅读
根据模塑封材料(EMC)疲劳实验,针对BP神经网络[反向传播神经网络(BPNN)]拟合误差与预测误差关系不稳定的应用问题,结合主成分分析法,“主动”改善网络结构,建立了基于BP神经网络的EMC材料疲劳寿命预测模型,进行了分析,并与一般的BP神经网络模型作了比较。结果表明,该方法得到的BP神经网络经过训练后能稳定表征EMC材料的各种参数与疲劳寿命间的内在关系。当网络拓扑结构为2-4-1时,预测结果稳定,预测误差平方和(SSE)为0.5623~0.0271,拟合误差(MSE)为0.0906~0.0278,具有