论文部分内容阅读
对于数学问题,找到解题思路之后,是借助“形”的直观来优化“数”的繁琐,还是借助“数”的严谨来诠释形的局限性,或者两者交互运用.在保证“数”、“形”信息等价转化的前提下,要取决于哪种方法更加优美简捷、更加便于达到解题目的.而解题方法的简与繁、优与劣依赖于数与形的结合层次的深度.在一定意义上,数
After finding the solution to the problem of mathematics, we should optimize the tediousness of “number ” by the intuition of “form ” or explain the limitation of form by the strictness of “number ” or use the two interactively Under the premise of guaranteeing that “” “” ’s information is equivalently transformed, it depends on which method is more elegant and simple and more convenient to achieve the purpose of solving the problem. Depends on the depth of the combination of the number and shape. In a certain sense, the number