论文部分内容阅读
为了提高图像融合效果,提出了一种基于Directionlet变换的图像融合算法.首先对已配准的待融合源图像由给定的生成矩阵分别进行陪集分解,得到每个陪集对应的子图;接着将每两个子图相减,得到源图像的高频和低频分量,其中边缘、纹理等奇异特征包含在高频分量中;然后对低频分量采用直接平均融合的方法进行系数选择,对高频分量选择子区域边缘信息较强的系数;最后,通过Directionlet陪集分解的反变换,得到融合后的图像.多聚焦图像融合实验表明,在主观视觉上,该算法明显更好地融合了边缘等图像特征,从而较好地保